Predicting Time Series with Space-Time Convolutional and Recurrent Neural Networks
نویسندگان
چکیده
Convolutional neural networks (CNNs) with their ability to learn useful spatial features have revolutionized computer vision. The network topology of CNNs exploits the spatial relationship among the pixels in an image and this is one of the reasons for their success. In other domains deep learning has been less successful because it is not clear how the structure of non-spatial data can constrain network topology. Here, we show how multivariate time series can be interpreted as space-time pictures, thus expanding the applicability of the tricks-of-the-trade for CNNs to this important domain. We demonstrate that our model beats more traditional state-of-the-art models at predicting price development on the European Power Exchange (EPEX). Furthermore, we find that the features discovered by CNNs on raw data beat the features that were hand-designed by an expert.
منابع مشابه
Investigating the performance of machine learning-based methods in classroom reverberation time estimation using neural networks (Research Article)
Classrooms, as one of the most important educational environments, play a major role in the learning and academic progress of students. reverberation time, as one of the most important acoustic parameters inside rooms, has a significant effect on sound quality. The inefficiency of classical formulas such as Sabin, caused this article to examine the use of machine learning methods as an alternat...
متن کاملHybrid Neural Networks for Learning the Trend in Time Series
Trend of time series characterizes the intermediate upward and downward behaviour of time series. Learning and forecasting the trend in time series data play an important role in many real applications, ranging from resource allocation in data centers, load schedule in smart grid, and so on. Inspired by the recent successes of neural networks, in this paper we propose TreNet, a novel end-toend ...
متن کاملArtificial Neural Networks architectures for stock price prediction: comparisons and applications
We present an Artificial Neural Network (ANN) approach to predict stock market indices, particularly with respect to the forecast of their trend movements up or down. Exploiting different Neural Networks architectures, we provide numerical analysis of concrete financial time series. In particular, after a brief résumé of the existing literature on the subject, we consider the Multi-layer Percep...
متن کاملTrenet: Hybrid Neural Networks for Learn- Ing the Local Trend in Time Series
Local trends of time series characterize the intermediate upward and downward patterns of time series. Learning and forecasting the local trend in time series data play an important role in many real applications, ranging from investing in the stock market, resource allocation in data centers and load schedule in smart grid. Inspired by the recent successes of neural networks, in this paper we ...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کامل